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NASA TTF-10,294

METHOD OF CALCULATING THE EFFECT OF A GUST ON AN
ARBITRARY THIN WING

S. M. Belotserkovskiy

ABSTRACT

Development of a numerical method of calculating
unsteady flow past a thin wing moving in an ideal
incompressible medium with the aid of a diagram of a
supporting surface. Since the time and coordinate
dependences of the boundary conditions on the wing
surface can be any desired, it is shown that the
proposed method can be used to study aperiodic motion
of the wing as a solid body, arbitrary deformations
of the wing, entry of the wing into a gust, the effect
of a weak shock wave on the wing, etc. The method is
said to be applicable to monoplane wings of any shape
in the plane, to annualr wings, to systems of similar
wings, etc.

A detailed summary of articles which compute the
influence of a gust on a wing is contained in the
monographs (Ref. 1, 2). Without discussing this
summary, we would like to point out that the effective
solution of the problem is only obtained for a profile

in the case of subsonic velocities.



1. Main Agsumptions of the Method. /51%

Let us assume that an arbitrary, thin supporting surface performs
unsteady motion as a solid body, or is deformed and enters gradually or
instantaneously into a gust. If we know the characteristics of the
gust, and the laws of motion and deformation of the body, we may readily
determine the normal velocity components corresponding to them on the
surface of the wing, and it may thus be assumed that they are known.
The normal component of the disturbed velocity W,, produced during the
motion of the supporting surface, must compensate for them at any moment
of time (condition of smooth flow). We should point out that, within
the framework of the linear theory to be considered later on, the inter-
action of the gust, the motion of the wing as a solid body, and the
deformation of its surface may be studied independently.

For purposes of definition, we shall investigate the monoplane
wing of an arbitrary, but symmetrical, form in a plane. Let us introduce
a moving coordinate system Oxyz, which is connected with the wing, with
the origin at the middle of the root chord b (Figure 1). We shall assume
that the main velocity (which does not depend on the time t) of the wing
Up is parallel to the root chord (0x axis).

In the general case, the boundary conditions at the wing may be

represented as follows

(1.1)

* Note: Numbers in the margin indicate pagination in the original foreign
text,.




Figure 1

Here x3, z; are coordinates of a point on the wing surface; 1 —--
dimensionless time; and ¢ -- a certain normalization, dimensionless con-
stant. For example, it is advantageous to select c¢ so that |f|.§ 1 for /52
the confined right portions of (1.1). 1In the linear problem, it may be
assumed that £ = 0 in the case of T < 0. We should also point out that,
if the solid wing moves at a zero angle of attack and gradually enters
a sharply confined gust, then the function f = 0 in the wing portion
which does not enter the gust.

It may be assumed that the perturbed motion of the liquid outside

of the wing, and the vortical track behind it, is a potential motion.
In the case of both steady and unsteady motions, the potential of the
perturbed velocities will satisfy the Laplace equation. The pressure
must change continuously at the vortex sheet behind the wing, and the
Chaplygin—-Zhukovskiy condition is satisfied at the trailing edges of
the wing.

In the case of arbitrary unsteady motion, the pressure difference

4p at the lower and upper wing surfaces may be expressed by the intensity
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Figure 2

of the attached vortex layer y; on the basis of the Zhukovskiy theorem
"in a small region" (Ref. 3)
Ap = — oV, Wyn 1.2)

Here Wyg, is the’normal to the vortex axis Yy corresponding to the
relative velocity of the medium at a point in the vortex layer, and p
is the medium density.

As is known, the velocity potential corresponding to the vortex
surface or to discrete vortices satisfies the Laplace equation.
According to (1.2), if the normal component of the relative medium velocity
equals zero, then there is no pressure difference on the free surface.
Consequently, the axes of the free vortices must be directed over the
local velocity of the medium, or these vortices must move at a velocity
equal to it. Within the framework of the linear theory, it may be
assumed that this velocity equals Ug. Instead of (1.2), we shall then

have
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Ap = pr,U,

(1.3)

The intensity of the attached vortices, whose axes are perpendicular
to the velocity Up, is designated by Yigz® The positive directions /Mp
and Y4, are shown in Figure 1. Thus, if the wing is replaced by a vortex
layer, several conditions of the problem are automatically fulfilled.

It is only necessary to select the intensity of this layer in such a way
that the conditions of smooth flow and of Chaplygin-Zhukovskiy are ful-
filled.

The basic concept of the numerical method for solving this problem,
which will be discussed below, consists of changing from continuous dis-
tributions and processes to discrete onmes.

In the first place, the continuously distributed vortex layer, which
replaces the wing, is approximately modeled by a system of discrete vor-
tices. However, in contrast to the procedure in (Ref. 3, 4), this substi-
tution is performed here not for the attached vortex layer, but for the
total layer consisting of free and attached vortices on the wing and
free vortices behind the wing (Figure 2).

In the second place, the continuous process of changing the boundary

condition and circulation with time is replaced by a step-wise process.
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At specific moments of time, there is a jump-like change in the boundary
conditions and circulations, and the circulations do not change in the
intervals between them. Corresponding to this, the free vortices converge
with the attached vortices at discrete moments in time (Figure 3).

2, Vortex model of the wing.

For monoplane wings, oblique, horseshoe vortices will be the main
elementary vortex systems (Figure 4). The circulations of the transverse
vortex and the longitudinal (parallel to the velocity U;) semi~infinite
vortex are constant and equal T*, According to (Ref. 3), the veloecity
produced by such a vortex system in the x*, 2Z*¥, plane may be represented

in the following form

* 2 L
Vy = ‘%;L w, (8 Lo %), T*=Ucl %= 2;;: » Lo= j: (2.1)

The dimensionless function, whose expression is given in (Ref. 3), is
designated by wy (Egs Zps X)-

The transition from the continuous change in circulation with time to a
discrete change makes it possible to regard the indicated stationary

vortex as the basic elementary system. Let us assume that the circulation



Figure 5

of the attached vortex T* on an arbitrary wing element changes in a
certain period of time t by the quantity A, . This will be accompanied
by the descent of the transverse free vortex of circulation AI+. At
the time t + At, the vortex system shown in Figure 5 is obtained,
instead of the oblique stationary vortex (Figure 4).

We should point out that the closed vortex filament ABCD of constant
circulation AT, may be regarded as the sum of two transverse vortices
AB and CD of equally opposed circulation with the semi-infinite longi-
tudinal vortices corresponding to them.

It is advantageous to replace the continuous vortex layer by dis-
crete vortices directly on the wing just as was done in the stationary
case (Ref. 3) and in the problem of harmonic wing oscillations (Ref. 4).

The wavy lines in Figure 2 indicate vortices, and the crosses
indicate the computed points at which the boundary conditions are
satisfied. We shall designate the number of transverse vortices by
i, the computed points -- j; ﬁortex %ilaments ~- u; computed lines —— v;

and cross sections parallel to the Ox axis -- k. The significant factor



in this arrangement is firstly that the computed points lie in the
middle between the vortices closest to them. In the second case, in
each band of k the last computed point lies closer to the tail than
the last vortex.

Generally speaking, the selection of the requisite amount of
vortices on the wing m = nN and the time intervals At between the com-
puted moments is done independently. When the circulation is computed,
it is not-advantageous to separate the vortices into free and attached
vortices. Thus, in contrast to the cases indicated above, a total layer,
which includes attached and free vortices, and not an attached layer,
is simulated here by the transverse vortices on the wing at each moment
of time.

Let us discuss in greater detail the‘transition from the changes
in the boundary condition which are continuous in time to
a step-wise change (Figure 3). We shall take the times indicated by
crosses as the computed moments of time, and we shall characterize them
by the number r

T,=rAT (rem 0,4, 2,..0)
(2.2)

They are chosen so that each of them directly precedes the moments
at which there is a jump-like change in the boundary condition, and
consequently in the circulation of vortices on the wing. These circula-
tions are only computed at the time 1., with allowance for the fact
that -~ during the change from the preceding computed moment to the

subsequent computed moment -- the free vortices behind the wing are




carried away below the flow at the distance UgAt.

At each computed moment of time, which is characterized by r, the
entire vortex layer on the wing is replaced by a system of oblique
vortices, as is shown in Figure 2., A system of free vortices behind
the wing is also produced by means of the oblique vortices whose posi-
tion with respect to the wing has not been fixed, and changes for
different r. The sweepback angle of the free vortices behind the wing

will be the same as for the last vortex filament on the wing u = n.

Figure 2 shows the vortex systems of the wing in the case of r = 1,
when one free vortex filament u = n + 1 is formed behind the wing, and
in the case of r = 2, when there are two such filaments (u = n + 1 and
u=mn+2),

The positions of the transverse free vortices behind the wing must
be selected so that the Chaplygin-Zhukovskiy condition is fulfilled at
the trailing edges of the wing. This condition causes the intensity of
the attached vortex layer Y4 at the trailing edges to vanish.

In order to fulfill this condition, it is necessary that the free
vortices behind the wing are located at a large distance from the last
computed line v = n at the computed moments of time. As computations
have shown, the Chaplygin-Zhukovskiy condition is fulfilled if we set
AB = BC (Figure 2). This means that we may assume that the minimum
distance between the free vortex filament y = n + 1 and the computed

line v = n is equal to the maximum distance between the vortex line

4 = n and the line v = n.




The wing chord at each cross section is separated into
n equal sections. The distance between the adjacent vortex filaments
(Ref. 3) at each cross section k will equal by/n, and therefore AB =
= L%b/n.
In the time At the transverse free vortex passes through
the distance AC = UpAt. Assuming that AB = BC = %AC, we find
Ar=1t/a Av=UAL}d (2.3)
According to (1.1) and (2.2), we obtain

1
T (2.4)
"

)
where t, and T, are the dimensional and dimensionless computed

times.

. 3. Calculation of the vortex positions and computed points.

The circulation of each vortex will depend on the computed
time, which can be characterized by the number r for a given number n
of vortex filaments on the wingbaccording to (2.4), and the number of
the vortex i. It is more advantageous to define the vortex position on
the wing by two quantities: the number of the filament p and the number
of the band k;, which correspondsto the vortex i. Assuming that the span
1, of each transverse vortex is the same, we shall investigate the dimen-
sional and dimensionless circulationsbof the total, attached and free /55

vortices on the wing.

o )  (r) (r) (AN 5 2¥ SN (4]
-,.k‘ = Uol,,I‘_M.i . lﬂ‘ki = Uolorin;( ) r-;ak‘ =U 0,0-\;“‘ (3. 1)

i

U<p<n,  1<ESN)

The circulations of free vortices which descend from the wing do not

10




change with time. Therefore, it can be assumed that they are dependent
either on u and kj or on r and ky
rﬁf:Uan“, (it p<atr, 1KESN) (3.2)

N is the number of bands into which the semi-span of the wing is
divided in formulas (3.1) and (3.2).

Numbering the transverse vortices i and the computed points j from
right to left, beginning with 4 =1 and v = 1 (Figure 2), we can write
the following for the wing of any form in a plane

i=k5-}—(p——1)i\' =1, ....m 1K<p<a)
j=k-+(—1O)N (i=f... motgvan (TN 3.3)

Let us derive the relationship for determining the requisite geometric
parameters of a wing with constant sweepback over the leading and trailing
edges (a wing of such a type is shown in Figure 2). Let 1 be the span;

b -- the root chord; by -— the chord at the cross section k; A — the
wing aspect ratio; n —-- contraction; Xy -- sweepback angle over the
leading edge of the wing; and xu -- sweepback angle of the filament u.

We then have (Ref. 3)

L hkmt - Bym—t ¢, B 5 )

P =% T X =18 % — % nd \2.=—§, "=_b:};

A _® _ 3 i‘;_i_zt"l—'f z.__iz_k L 1 (3-4)
b=y Gn * b - ey AT T TN

Let us set
@5 ) (@t )
—— the coordinates of the middle of the transverse vortex i and the com-

puted point j, respectively. We then have (Ref. 3)

11
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i,
Todd 4 4v—y , Anx Ar - (3.5)

5 =-.T-—/“+._L‘ __kz-_—__z_’_z.,‘(.’_‘.n_ﬂz.gh_u\
x, 2 AR bk} by by 4 2y

Either ki or kj may be substituted in the formulas, where k occurs
without an index.

Let us turn to vortex filaments behind the wing u = n+ ¢, € = 1,
.«se, I, which are obtained by the parallel shift of the filament
U = n along the Ox axis by eb/n. Retaining the same notation as was
used for the wing, we would like to note that all the relationships given
above which do not include yu remain unchanged. In addition, we have

Ymee = n (€28 o) (3.6)

In accordance with these considerations, the following relatiomship

holds (Figure 2)
Fadi=aM—ela

Let us find the expression for the dimensionless coordinates in

which the velocities (2.1) are computed at the point j, calculated both

from the vortex i,which is located on the same half of :the wing, and from the

vortex i' which is symmetrical with i. Comparing the coordinate systems

of Figures 2 and 4, after the obvious transformations, we shall have /56
b, k b 1 4
b L K, T, )
e TRy, i SR )
O { ( ) b,,‘ b bk), ; - (3.7)
;oktki = 2N (:k“ —_— Zokj‘)r (§o + OCO)“") = 2N (zk" -+ Zk)-')

When the velocities from the free vortices behind the wing are

kiks
computed, the dimensionless coordinates col J and (zo + 8zgp) kikj will
be determined by the same formulas. According to (3.6), we can write

12



Xk, 2 . .
Bor = 7 (Tnedt — ")

We thus have

k. ek 8Ne 7
Bonts’ = Boidd — nh M1 (e=1, ... (3.8)

The dimensionless velocities (2.1), which correspond to the vortices

i and i' and are computed by these arguments, can be designated by

5% Xk X, X, ok,
wili=w, G0, L ny, Slli=w, G Lo+ 800", %) (3.9)

and we thus have

Fnee =%n (e=1,...,r) ‘ (3.10)

4, Equations for circulation.

Let us compile the equations for determining the dimensionless circu-

lations of total vortices on the wing P(ri and the free vortices behind
*UK3
the wing 6&?). At each computed moment T all of the total circulations
i

on the wing must be determined anew, and only the circulations on the
line y = n + 1 are unknown for the free vortices. Thus, for any r, the
number of the unknowns equals m + N (Figure 2).

The superscript for §

ér) indicates that for any value of r, the

i

given free vortices occur on the line y = n+ 1. In addition, these
vortices converge below the flow, and their circulation does not change.
Therefore, in the case of r = ¢, the following relationship is estab-

lished between the number of the line behind the wing y and the circula-

tion of free vortices § on it:

13



p=n--4, n+2, ..., nte
6 6; (¢)' ék‘.“-l)’ e e, 5k(x)

On the basis of (2.1) and Figures 2 and 4, we can write the following

for the velocity'produced by the entire vortex system of the wing:

——-n,-;— “,, u;wiéw-:—
K=l =.x
¥ P (4.1)
L m K Xk,
iR S‘ 2 8x (“'viur xnvi&";;«»}r-:uv)
.'t‘nl C el

The positive directions for the total and free vortices are shown
in Figure 2,

The plus sign in these formulas is chosen for symmetrical circula-
tions, and the minus sign is chosen for circulations which are anti-
symmetric with respect to the z = 0 plane.

In order to determine them, we have the conditions regarding smooth
flow around the wing (1.1) and the circulation of all the vortices on
the wing and behind it equalling zero at each cross section k; = const
for any r.

The boundary condition will be satisfied at the points j for the
computed times 1,. Therefore, the right part of the equation
will contain the functions

I3 = fiziib, 2o /by 7. (4.2)

Taking these considerations into account, on the basis of (1.1),

(4.1) and (4.2), we obtain the following systems of algebraic linear

equations :

14
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TR !
ok yx XK
- Z 2 z (wvtnz;{: 6wu‘»£) —_

=1p=1

N r (2)

1 8, Xk kX (r)
= ox 2 2 ¢ (wu:u)r-uxv:téwy:u'r-nn) = Jap

l"—l =1 (4 3)
" ‘r): r k(.) )
NI
o -—2 t_ =0 =1, wom=aN k=10, N
- ¢ ¢
w=1 Lax]

k.=1, ..., Nv=1,..,n)

]

For each value of r, the solution of these systems is performed

independently, beginning with r = 1, and so on, for consecutively in-

creasing r. The unknowns will be Firi /c and Gér) /c, since the
ui i
(e

ky

quantities § ) /c will already have been found in the case of € < r.

5. Determination of attached vortex circulations.

According to the Zhukovskiy theorem "in the small region" (1.3), the
aerodynamic loads of the wing may be expressed by the circulation of
attached vortices. Therefore, we must find the circulation of the

attached vortices Fuki from the total circulation, found above, on the

(r)
*uleg

wing T at each computed time T,.

In order to do this, in each cross section k it is advantageous to
change from oblique vortices to straight vortices having the same circula-
tion (Figure 6). It follows from (1.3) that these vortex systems produce
the same normal forces.

Let us examine the arbitrary cross section k; (Figure 6). In this
cross section, the distance between the adjacent vortices will be the

same and will equal b) /n. Let us assume that Aty is the time during
i i
which a free vortex, which drifts at the velocity Up, passes through the

15



Figure 6

indicated distance. Similarly to (1.1) and (2.4), let us introduce the
dimensionless quantities
T,k‘ = re ATy (r',s =1,2...) (5.1)

and let us designate Try, 28 the computed moments of the cross section kj.
i

On the one hand, Arg; = Atki Ug/b, and on the other hand Aty U = bki/n.
i

We then have
. b
Ay = 5=~ (5.2)

As a result, we have a relationship, which is similar to (2.4) and

which enables us to find the computed moments at each cross section ky

r, b
o= 22 (5.5

By analogy with (3.1), the dimensionless circulations of total,

attached, and free vortices on the wing at the times Trk will be

i
(r; ) () ()
designated by T, .~ , T , A 1 . Let us take the direction shown

in Figure 2 for the total circulatioms as the positive direction for the

first two vortices, and for the free vortices it is natural to take the

16



inverse direction as the positive direction, just as for Gér). Based /58

r
on the data in Section 4, we can readily compute the values of Tiuﬁi)
i
by interpolation. For this purpose, for the value of rki under considera-

tion, it is necessary to find those r for which
T, < T,k‘< T Qr r<C r,,,.ib,,‘,-’b w<raq
hold.
The latter is obtained according to (2.4) and (5.3).

Thus, the selection of the values of r which are requisite for inter-

polation is done for given k. ©°n the basis of the following inequality

i
0\<_'r,,1b,v\-i/b—r <1 (5.4)

After this, if -- for example -- we confine ourselves to linear

interpolation, we may write
VﬂWJAr L oy Py \

.P,}i = AT ( Sk, T 'el:i) krk‘T —r (5. 5)

(ry.)

Let us compute the circulation of the attached wvortices ruk 1 s
i

(rk )
assuming that the total circulations r*uki are known. Since the circu-
i

lation of the attached vortex changes due to the descent of the free

vortex, we then have

e AT -1 T
7 P A( k)

vy —4 BA; L (5 - 6)

The free vortices drift below along the flow, and the computed
times Tk; are selected so that during the time between them the vortices

traverse exactly the distance between the adjacent lines p and u + 1

17



(Figures 3 and 6).

Therefore, at the computed times Tky there will never be free
vortices on the filament u = 1; on the second filament, there will only be
vortices from the‘first, on the third filament there will only be vor-

tices from the second in the case of ry = 1; in the case of Ty, = 2 -
i

from the second and third, etc. Taking these comnsiderations into

account, we may write

a('}(i Y by ) (] _opire) ()
l'xi’i = rlki‘ ’ r'zk: - in;.‘ - Axk'.'
o .'Gﬁ' .}%;.. POARREREE (5.7)
R i i i —_—— s Al
l‘pki = er: ) A»—x‘k‘ Ap-z‘e,. T Bk
On the basis of (5.6) and (5.7), we may obtain the recurrence
formula for computing the circulation of attached vortices
Coe
&) e tri) e R PR "“"”] e T f
By m1‘£‘+{rrhf—rwhij. N =Tl |t Teny (5.8)

It may be assumed that all circulations with non-positive indices
equal zero in formulas (5.6) - (5.8).

6. Computation of wing aerodynamic characteristics.

(k)
First of all, by interpolation over time we must change from Fpk.l
i
to F(i) —- to the circulation of attached vortices at the computed times
i .

Ty Which are the same for every wing. In order to do this, we must also

find Trki, when the following inequality is fulfilled for given T,

Trgi‘g 7r<1'rk‘ﬂ' or 0<"I"I’bi“‘”k‘< 1 (6'1)

The latter holds according to (2.4) and (5.3).
We can determine rp =1, 2, ... from (6.1) for the values of r =
i

=1, 2, ... . After this, confining ourselves to linear interpolation,

18
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Figure 7

for example, we have

I‘mi — + [F(rk‘”) _ 1‘:::;; )} ("b'/b'i —ry) (6.2)

Pk‘ i‘k‘

On the basis of the Zhukovskiy theorem "in the small region" (1.3),
we may now readily determine unsteady aerodynamic loads on the wing,
the cross section characteristics, and the total coefficients of the
wing.

We must take the fact into account that at each section & = bki/n
the continuously distributed layer is replaced by one discrete vortex.

According to Figure 1, for the supporting force and the moments of
the wing, we have expressions in which summation is performed over one

(right) half of the wing

Y(r) =2 -: A]i.'")AS.'
1

A‘I[(r) = 2 2 AP["’J‘A‘?‘
(6.3)

Here i is the number of the attached vortex; AS; -- the corresponding

elementary surface; x;, z; -- coordinates for the middle of the vortex.

19
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On the basis of (1.3), we have

ApiIAS; = oU oglo’rpi.?
Let us introduce the aerodynamic coefficients

231 47

M a0
- PUQ“Sb v x

= pUSST

(1) = 2
i pUgs . ™

where § is the wing surface. We then obtain

(6.4), and (6.5)

ki ha=t
N " 5 X
Lo Ny R N
mi = e N0 T - by
[ 7Rl B )
N N =
TONY e (R
m.t"': TTANY :24 )J lﬁ‘i “&
kg Yard
i

» n
r) AN+t b 2 nin ) An-+1 b ¢ rl
O, = G — N T mi) = 2y e
’ : Toby T K “om b'x net PPS“ b’t
y,___gésﬁﬂk‘ o1 __ 2AMYy
YR pUdley, % pURD, S
() (r)

We shall employ AY K and MM, K.
i

(6.4)

(6.5)

the following from (6.3),

(6.6)

(6.7)

(6.8)

to designate the supporting force

and longitudinal moment with respect to the Oz axis, produced in the

20
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cross section k;.

7. Examples.

Let us present certain data characterizing the interaction of the
medium when the wing changes smoothly from a zero angle of attack to
the angle a = a* for an equilateral triangular wing 1 and a rectangular
wing 2 having the same wing aspect ratio » = 2.31.

The law for the change in the angle of attack over dimensionless
time has the following form

aq-'=='3.-“+-f{3‘-=‘-ﬂ<f~w- O<r o, S=1 @SiLw) (7.1)
and is shown by the dashed line in Figure 7.

Figure 8 illustrates the nature of the intensity distribution of
the attached vortex layer on wing 1 in the cross section z* = 0.917
located close to the end of the wing, at different moments in time,
where Z = [(y + 2)/o*Uy]lby/b. We have employed x' to designate the

distance from the leading edge to a point in the cross section (x'/bki =

= 0 -~ spout and x"/bg, = 1 —- trailing edge of the cross section).
i

Figure 7 shows a change in the supporting force coefficient and
a shift in the wing focus with time. The indices indicate for which
wing the coefficients are chosen. The dimensionless coordinates of
the focus are computed from the spout of the mean aerodynamic chord
and pertain to this chord (Ref. 3). It should also be noted that the
dashed curve, besides the dependence of a/o* on t, gives the approxi-
mate law for the change in the coefficient of supporting force

emanating from the so-called hypothesis of steadiness.

21
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Figure 10

The influence of a vertical gust which is variable with time is
examined for a triangular wing 3 and a rectangular wing 4 with the wing
aspect ratio A = 2.5. vIt is characterized by the following relationship

1=0, < i=% >0 (7.2)

Figure 9 (wing 3) and Figure 10 (wing 4) show the manner in which
the cdéfficient of the supporting force and the position of the focus
change with time when a gust instantaneously encompasses the wing (solid
lines) and when the wing gradually enters the gust (dashed line). The
data obtained from the steadiness hypothesis are shown by the dot-dash
lines.

The author would like to thank E. P. Kapustina, who provided the

computational examples.
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